Editas, MGH Announce Exclusive Licensing Agreement

August 3, 2016

By Bio-IT World Staff

August 3, 2016 | Editas Medicine and Massachusetts General Hospital (MGH) announced an exclusive licensing agreement this morning, under which Editas can access intellectual property and technology related to high-fidelity Cas9 nucleases and Cas9 PAM variants that will enable the company to address an expanded range of genetically-defined diseases with the potential for enhanced specificity.

“This agreement with MGH marks additional progress on our strategy of building a company committed to advancing the science behind CRISPR to benefit patients facing genetically-defined diseases,” said Katrine Bosley, President and CEO of Editas Medicine, in a statement. “Keith Joung and his MGH team have done tremendous work in creating these novel, engineered forms of Cas9, and these advancements align fully with our highly differentiated genome editing platform. We are eager to deploy them and unlock their therapeutic potential.”

“I’m delighted to hear that MGH and Editas Medicine have entered into this important agreement,” said J. Keith Joung, M.D., Ph.D., Associate Chief for Research, the Jim and Ann Orr MGH Research Scholar in the MGH Department of Pathology, and a scientific co-founder of and consultant to Editas Medicine. “I look forward to the full potential of these high-fidelity Cas9 and Cas9 PAM variants being maximized to develop safe and effective therapies for patients with a broad range of diseases.” (Joung has spoken previously with Bio-IT World about Editas.)

As published in the January 28, 2016 issue of Nature, MGH researchers led by Dr. Joung described their high-fidelity Cas9 variant – Streptococcus pyogenes Cas9-HF1 – designed to reduce non-specific DNA contacts. SpCas9-HF1 rendered all or nearly all off-target events undetectable by genome-wide break capture and targeted sequencing methods. The MGH team has also identified and characterized a series of novel S. pyogenes and S. aureus Cas9 PAM variants that substantially increase the range of sites in the genome that can be targeted for genome editing. The protospacer adjacent motif, or PAM, is the region of the Cas9 protein that helps determine where Cas9 can bind to DNA. These PAM variants were described in more detail in the July 23, 2015 issue of Nature and the December 2015 issue of Nature Biotechnology.